

SERIE D, E, F, TI, GCE

MATHEMATIQUES

Durée: 3 Heures

Yaoundé le 16 mai 2023

Concours d'entrée en première année

EXERCICE 1. 05 POINTS

1-

a) Résoudre dans \mathbb{R}^3 le système (S) de trois équations.

1,00pt

$$\begin{cases} X - 2Y + 3Z = -23 \\ 2X + 3Y - Z = -4 \\ 5X - Y + 2Z = -13 \end{cases}$$
 (S)

b) En s'appuyant sur le système précédent, déterminer les solutions du système (S').

1,50pt

$$\begin{cases} 3(x+y) - 2xy + 3xyz = -20\\ 2(x+y) + 3xy - xyz = -4\\ 5(x+y) - xy + 2xyz = -13 \end{cases}$$
 (S')

2- On donne les intégrales $A=\int_0^{\frac{\pi}{2}}\frac{\cos x}{1+2\sin x}dx$, $B=\int_0^{\frac{\pi}{2}}\frac{\sin 2x}{1+2\sin x}dx$ et C=A+B .

a) Calculer la dérivée de la fonction u définie par : $u(x) = \ln (1 + 2sinx)$. **1,00pt**

b) Calculer les intégrales C et A. 1,00pt

c) En déduire la valeur de l'intégrale B. **0,50pt**

EXERCICE 2. 05 POINTS

On considère dans l'ensemble \mathbb{C} l'équation (E): $z^3 - (2+3i)z^2 + 2(5+3i)z - 20 = 0$.

1- Montrer que l'équation (E) admet deux solutions imaginaires à déterminer. **1,00pt**

2- Déterminer le nombre complexe u pour que l'équation (E) s'écrive sous la forme (z+2i)(z-5i)(z+u)=0.

3- En déduire la résolution dans \mathbb{C} de l'équation (E).

4- On munit le plan complexe d'un repère orthonormal $(0; \vec{u}, \vec{v})$. On considère les points A, B, C et D d'affixes respectives $z_A = 2$, $z_B = 5i$, $z_C = -2 + 3i$ et $z_D = -2i$.

a) Placer les points A, B, C et D dans le repère. **1,00pt**

b) Montrer que le quadrilatère ABCD est un parallélogramme. **0,50pt**

5- Soit S la similitude plane directe qui transforme A en B et D en C.

a) Montrer que l'écriture complexe de S est z' = z - 2 + 5i. **0,75pt**

b) En déduire la nature et les éléments caractéristiques de S. **0,75pt**

SERIE **D, E, F, TI, GCE**

MATHEMATIQUES

Durée: 3 Heures

EXERCICE 3. 05 POINTS

Soit la fonction f définie par : $f(x) = \ln(e^x + e^{-x})$ et (\mathcal{C}) sa courbe représentative dans un repère orthonormé (0,I,J).

1- Préciser l'ensemble de définition de f.

0,50pt

2- Dans la suite, on va étudier la fonction sur $[0, +\infty[$.

a) Déterminer la limite de f en $+\infty$.

0,50pt

b) Démontrer que $\forall x \in [0, +\infty[$, on a : $f(x) = x + \ln(1 + e^{-2x})$.

0,50pt

c) En déduire que la droite (Δ) d'équation y = x est asymptote à la courbe (\mathcal{C}) de f.

0,50pt

d) Etudier la position relative de (C) et (Δ) .

0,50pt

e) Etudier le sens de variation de f et dresser son tableau de variations.

1,50pt

f) Tracer la courbe (\mathcal{C}) et la droite (Δ).

1,00pt

EXERCICE 4. 05 POINTS

1- Une unité de production d'huile de palme présente dans le tableau ci-dessous ses productions sur six années consécutives en milliers de litres d'huile de palme et le prix de vente de la production en millions de francs CFA

Année	2001	2002	2003	2004	2005	2006
Production (x_i)	32	35	37	40	42	48
Prix de la vente (y_i)	22,4	25,2	25,9	29,2	31,5	31,4

- a) Calculer le coefficient de corrélation linéaire entre les deux variables puis donner une interprétation de ce résultat **1,25pt**
- b) Déterminer la droite de régression de Y en X.

0,75pt

- c) Pour une production annuelle de 60.000 litres d'huile, à combien peut-on estimer le prix de la production ? **0,50pt**
- 2- On considère l'équation différentielle $(E): y'' 2y' + y = 4e^x$.
 - a) On pose $u(x) = 2x^2e^x$. Vérifier que u est une solution de (E).

0,50pt

b) On pose $z=\varphi-u$. Montrer que φ est solution de (E) si et seulement si z est solution de $(E_0):y''-2y'+y=0$. **0,50pt**

c)

a. Résoudre dans \mathbb{R} l'équation différentielle (E_0) .

0,75pt

b. En déduire les solutions de l'équation (E) et celle dont la courbe passe par l'origine du repère et admet en ce point une tangente perpendiculaire à la droite d'équation $y=\frac{1}{3}x$. 0,75pt

Fin de l'épreuve.