PRÉPAS INTERNATIONALES

Filière Ingénierie Générale

B.P.: 2375 Yaoundé Sis Carrefour des Carreaux, Immeuble 3^{ème} étage Tél.: 696 16 46 86

E-mail.: prepasinternationales@yahoo.com
Site: www.prepas-internationales.org

Yaoundé le 22 juillet 2021

SERIE D, E, F, TI, GCE/AL

PHYSIQUE

Durée: 3 Heures

Concours d'entrée en première année

EXERCICE 1: ONDES MÉCANIQUES. 5 POINTS

On relie l'extrémité O d'une lame vibrante à une corde tendue de longueur $00'=2\,m$. La lame vibrante subit des oscillations sinusoïdales verticales de fréquence $N=100\,Hz$ et d'amplitude $a=4\,mm$.

Ces vibrations se propagent le long de la corde avec une célérité $c=20\ m/s$.

1. Calculer la longueur d'onde λ des vibrations.

1,00pt

- **2.** Décrire le phénomène observé au moment où la corde est éclairée par un stroboscope dont les fréquences prennent les valeurs :
 - a) $N_e = 25 \text{ Hz}$; b) $N_e = 102 \text{ Hz}$.

1,00pt

- En considérant l'origine des temps l'instant où O passe par sa position d'équilibre dans le sens positif, écrire l'équation horaire du mouvement de la source O.
 1,00pt
- **4.** Donner l'élongation d'un point M situé à la distance x de la source O. **1,00pt**
- Déterminer l'expression des abscisses des points qui vibrent en opposition de phase avec la source O.

 1,00pt

EXERCICE 2: PHENOMENES CORPUSCULAIRES. 5 POINTS

1. Effet photoélectrique

Le travail d'extraction d'un électron du potassium est W_0 = 2,25 eV. Un dispositif permet d'éclairer séparément la cathode d'une cellule photoélectrique au potassium, avec deux radiations monochromatiques de longueurs d'onde respectives λ_1 = 600 nm et λ_2 = 450 nm.

- **1.1.** Laquelle des deux radiations produira l'émission photoélectrique ? Justifier votre réponse. **1,50pt**
- **1.2.** Calculer la vitesse maximale d'un électron à la sortie de la cathode. **1,50pt**

Données : Constante de Planck : $h = 6,62.10^{-34} J.s$; Célérité de la lumière : $c = 3.10^8 m.s^{-1}$; Masse d'un électron : $m = 9,1.10^{-31} kg$; $1 eV = 1,6 \times 10^{-19} J$

2. Réactions nucléaires

Dans une pile atomique, on peut obtenir la réaction nucléaire suivante :

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{139}_{53}I + ^{94}_{39}Y + a^{1}_{0}n$$

2.1. Quelle est la valeur de a?

1,00pt

2.2. Calculer en MeV, l'énergie libérée au cours de cette réaction nucléaire.

1,00pt

Données : Masse d'un neutron : m(n) = 1,0087 u ; $1 u = 931,5 \text{ MeV/c}^2$.

	•			
Nucléide	²³⁵ ₉₂ U	⁹⁴ ₃₉ Y	¹³⁹ ₅₃ I	
Masse en u	235,044	93,906	138,905	

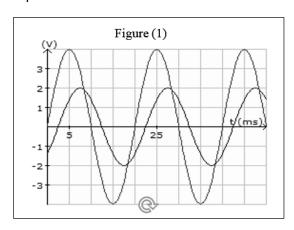
PRÉPAS INTERNATIONALES

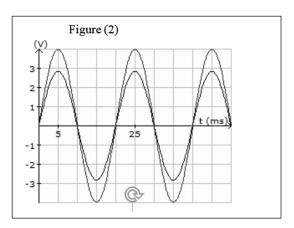
Filière Ingénierie Générale

B.P.: 2375 Yaoundé Sis Carrefour des Carreaux, Immeuble 3^{ème} étage Tél.: 696 16 46 86

E-mail.: prepasinternationales@yahoo.com
Site: www.prepas-internationales.org

SERIE D, E, F, TI, GCE/AL


PHYSIQUE


Durée: 3 Heures

Yaoundé le 22 juillet 2021

EXERCICE 3: OSCILLATIONS ELECTRIQUES. 5 POINTS

Un dipôle D comprend en série une bobine de résistance r et d'inductance L, et un résistor de résistance R = $20~\Omega$. On branche aux bornes de D un GBF délivrant une tension sinusoïdale u de fréquence f.

- 1. Grâce à un oscilloscope permettant de visualiser simultanément la tension u aux bornes du dipôle D et la tension u_R aux bornes du résistor de résistance R, on observe les courbes de la figure (1).
- **1.1.** Faire un schéma du circuit en indiquant les branchements de l'oscilloscope. **1,00pt**
- **1.2.** A partir des courbes, déterminer :
 - **1.2.1.** la fréquence (f) de la tension sinusoïdale ; **1,00pt**
 - **1.2.2.** la phase φ de la tension u par rapport à l'intensité i du courant.
- **1.3.** Déterminer l'impédance Z du dipôle D. **1,00pt**
- On insère dans le circuit précédent et en série, un condensateur de capacité C. Les branchements à l'oscilloscope n'étant pas modifiés, on observe sur l'écran les courbes de la figure (2). Préciser l'état de fonctionnement du nouveau circuit.
 1,00pt

EXERCICE 4: LE PENDULE SIMPLE. 5 POINTS

On considère un pendule simple constitué d'un fil de longueur ℓ auquel on a accroché un objet ponctuel de masse m=50 g. Ce pendule est disposé sur une table inclinée d'un angle α sur l'horizontale. On néglige les frottements.

Pour une amplitude θ_m = 10°, plusieurs mesures de la période T_0 ont été effectuées pour des longueurs de fil différentes :

$\ell\left(m\right)$	0,20	0,40	0,50	0,60	0,70	1,00
T_0 (s)	1,54	2,17	2,43	2,65	2,87	3,43

1. Citer deux instruments de mesure utilisés lors de cette expérience.

1.00pt

2. Tracer la courbe représentant le carré de la période en fonction de ℓ : $T_0^2 = f(\ell)$.

1,50pt

B.P.: 2375 Yaoundé Sis Carrefour des Carreaux, Immeuble 3^{ème} étage Tél.: 696 16 46 86

E-mail. : prepasinternationales@yahoo.com
Site : www.prepas-internationales.org

SERIE D, E, F, TI, GCE/AL

PHYSIQUE

Durée: 3 Heures

Yaoundé le 22 juillet 2021

Échelles: $1 \text{ cm pour } 1 \text{ s}^2$; 1 cm pour 0.1 m.

3. On cherche à déterminer l'expression théorique de la période propre T₀ des petites oscillations du pendule disposé sur le plan incliné, en fonction de la longueur ℓ. Choisir la bonne expression de T₀, à partir d'une analyse dimensionnelle, parmi les propositions suivantes :

a) $T_0=2\pi\sqrt{\frac{\ell}{g\sin\alpha}}$; b) $T_0=2\pi\sqrt{\frac{g}{\ell\sin\alpha}}$; c) $T_0=2\pi\sqrt{\frac{g\ell}{\sin\alpha}}$.

4. Déterminer, à partir d'une exploitation du graphique, la valeur de l'angle d'inclinaison α de la table par rapport à l'horizontale. 1,00pt

Données : $g = 10 \text{ m.s}^{-2}$.

Fin de l'épreuve.