

## Filière Ingénierie Générale

**B.P.: 2375 Yaoundé** Sis Carrefour des Carreaux, Immeuble 3ème étage Tél.: 696 16 46 86

E-mail.: prepas.internationales@yahoo.com

Site: www.prepas-internationales.org



**PHYSIQUE** 

**Durée**: 3 Heures

Yaoundé le 30 juillet 2020

figure 1

1,00pt

1,00pt

## Concours d'entrée en première année

### **EXERCICE 1 : MOUVEMENT DANS LES CHAMPS DE FORCES. 10 POINTS**

NB: Les parties 1 et 2 sont indépendantes.

**Partie 1 :** Mouvement dans le champ de pesanteur  $\vec{g}$  uniforme. 5 points.

On lance un projectile de masse m du point O, origine d'un repère plan (Ox, Oy) avec une vitesse  $\overrightarrow{V_0}$  faisant un angle eta avec l'horizontale (Ox) et de valeur  $V_0$  = 72 km/h. Le projectile retombe sur un plan incliné d'un angle  $\alpha$  avec l'horizontale ( $\alpha < \beta$ ). L'angle  $\alpha$  est supposé constant. On néglige l'action de l'air.

**Données** :  $\alpha = 30^\circ$  ;  $\beta = 60^\circ$  ; g = 10 N/kg.

Établir les coordonnées du vecteur position  $\overrightarrow{OM}$  du projectile 1.1. à chaque instant t.

1.2. Déduire l'équation de la trajectoire du projectile.

- Déterminer en fonction de  $V_0$ , g,  $\beta$  et  $\alpha$  l'expression de l'instant  $t_B$  où le projectile retouche 1.3. en B le plan incliné après le lancer en O; puis calculer sa valeur. 1,50pt
- 1.4. calculer d. 1,50pt

**Partie 2 :** Mouvement dans le champ magnétique  $\vec{B}$  uniforme. 5 points.

À l'aide du spectrographe ci-contre, on se propose de séparer les ions  ${}^6Li^+$  et  ${}^7Li^+$  de masse respective  $m_1$ et  $m_2$ . Les ions  $Li^+$  pénètrent en  $O_1$  dans le champ électrique  $\vec{E}$  existant entre les plaques verticales  $P_1$  et  $P_2$  pour y être accélérés jusqu'à  $O_2$ .

Quel est le signe de la tension  $U = V_{P1} - V_{P2}$  que 2.1. l'on établit entre  $P_1$  et  $P_2$  ?

Les ions  $Li^+$  pénètrent en  $O_2$  dans le champ 2.2. magnétique  $\overrightarrow{B}$  uniforme et perpendiculaire au plan du schéma et parviennent dans la zone de réception incliné d'un angle  $\alpha$  sur la verticale.

**2.2.1.** Préciser en le justifiant le sens de  $\vec{B}$ . 1,00pt

2.2.2. Montrer que le mouvement de chaque ion dans le champ magnétique est circulaire et uniforme de rayon R =

1,00pt

Déterminer la distance  $O_2M$  du point d'impact en fonction de B, m, U, e et  $\alpha$ . 2.3.

Ionisation Accélé- $\alpha$ figure 2 Zone de réception

у

 $\overrightarrow{V_1}$  ou  $\overrightarrow{V_2}$ 

 $P_2$ 

 $P_1$ 

 $O_1$ 

 $\vec{E}$ 

1,00pt

# PRÉPAS INTERNATIONALES

## Filière Ingénierie Générale

B.P.: 2375 Yaoundé Sis Carrefour des Carreaux, Immeuble 3ème étage Tél.: 696 16 46 86

E-mail.: <u>prepas.internationales@yahoo.com</u>
Site: <u>www.prepas-internationales.org</u>

SERIE <u>C</u>

**PHYSIQUE** 

**Durée** : 3 Heures

Yaoundé le 30 juillet 2020

**2.4.** Exprimer la distance d séparant les points d'impact des deux types d'ions à leur arrivée dans la zone de réception en fonction de B,  $m_1$ ,  $m_2$ , U, e et  $\alpha$ . Faire l'application numérique.

**Données**:  $|U| = 10^4 \text{ V}$ ; B = 0.2 T;  $m_1 = 6 \text{ u}$ ;  $m_2 = 7 \text{ u}$ ;  $1 \text{ u} = 1.67 \times 10^{-27} \text{ kg}$ ;  $\alpha = 60^\circ$ ;  $e = 1.6 \times 10^{-19} \text{ C}$ .

### **EXERCICE 2 : PHÉNOMENES CORPUSCULAIRES. 5 POINTS**

Sous l'action d'un neutron lent, un noyau d'uranium subit la réaction nucléaire suivante :

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{91}_{21}Zr + ^{A_{2}}_{58}Ce + 3.^{1}_{0}n + 6.^{0}_{-1}e$$

1. De quel type de réaction nucléaire s'agit-il?

0,50pt

**2.** Déterminer  $Z_1$  et  $A_2$  en rappelant les lois de conservation utilisées.

2,00pt

- **3.** Calculer en MeV l'énergie de liaison par nucléons de  $^{235}_{92}U$ . Est-ce un noyau stable ? Justifier votre réponse. **1,25pt**
- **4.** L'isotope  $^{239}U$  quant à lui est radioactif  $\beta^-$ . Par deux désintégrations spontanées successives il donne le plutonium  $^A_Z Pu$ .
- **4.1.** Déterminer A et Z

0,50pt

**4.2.** La première désintégration a pour période T' = 25 min. Calculer la proportion  $\frac{N}{N_0}$  des noyaux  $\frac{239}{U}$  restant après 125 min. **0,75pt** 

 $N_0$  = nombre initial de noyaux présents à l'instant t = 0 s.

N = nombre de noyaux restants au bout de 125 min.

**Données** : m(U) = 234,9934 u ;  $m_p$  = 1,00728 u ;  $m_n$  = 1,00866 u ; 1 u = 931,5 MeV/c².

#### **EXERCICE 3 : ÉLECTRICITÉ. 5 POINTS**

- 1. Une bobine possède une résistance R et une inductance L. On maintient entre ses bornes A et B une tension sinusoïdale u telle que  $u(t)=110\sqrt{2}.\cos(100\pi t)$ , avec t en secondes et u en volts. Lorsque la bobine est traversée par un courant d'intensité efficace I = 1,5 A, la puissance moyenne absorbée est P = 81 W.
- **1.1.** Calculer les valeurs de R et L.

1,00pt

**1.2.** Calculer le facteur de puissance de cette bobine.

1,00pt

**1.3.** Ecrire l'expression du courant instantané i en fonction du temps t.

1,00pt

- 2. Un condensateur de capacité  $C = 10 \mu F$ , préalablement chargé par une tension continue de valeur  $U_0 = 12 \text{ V}$ , est relié à une bobine de résistance négligeable et d'inductance L = 0.1 H. A l'instant initial, la charge du condensateur est  $Q_0 (Q_0 > 0)$  et l'intensité du courant est nulle.
- **2.1.** Etablir l'équation différentielle à laquelle obéit la charge q du condensateur.

1,00pt

**2.2.** Exprimer la charge q en fonction du temps t.

1,00pt

Fin de l'épreuve.