

TOUTES SERIES MATHEMATIQUES

Durée: 2 Heures

Yaoundé le 16 mai 2024

Concours d'entrée en première année HAUTES ETUDES DE COMMERCE

EXERCICE 1 (04,5 POINTS)

- 1- On donne quatre nombres complexes $z_1=b+ai$, $z_2=d+bi$, $z_3=b+di$ et $z_4=d+ci$ où a, b, c et d sont des nombres réels et $z_1=\overline{z_3}$.
 - a) Trouver une relation entre les nombres a et d.

0,50pt

b) Déterminer les nombres z_1 , z_2 , z_3 et z_4 si ceux-ci vérifient le système : **1,50pt**

$$\begin{cases} z_1 + z_2 + z_3 + z_4 = -6 \\ 3z_1 + 2z_2 + z_4 = -9 + 5i \end{cases}$$

- 2- Le plan est muni d'un repère orthonormé (O, \vec{u} , \vec{v}). On considère quatre points A, B, C et D d'affixes respectives : $z_A = -2 i$, $z_B = -1 + 2i$, $z_C = -2 + i$ et $z_D = -1 2i$.
 - a) Placer ces quatre points dans ce repère.

0.50p

- b) Vérifier que $|z_A| = |z_B|$ puis déterminer la rotation R qui transforme A en B et D en C. **1,00pt**
- c) Montrer que les quatre points A, B, C et D sont sur un même cercle dont on précisera le centre et le rayon. **1,00pt**

EXERCICE 2 (06 POINTS)

1-

a) Linéariser l'expression $u(x) = \sin^2 x \cdot \cos^2 x$.

0,75pt

b) Calculer la valeur de l'intégrale $I = \int_0^\pi u(x) dx$.

0,75pt

- c) Vérifier que $cos^4x + sin^4x = 1 2$. sin^2x . cos^2x ; puis calculer la valeur exacte de l'intégrale $J = \int_0^\pi (cos^4x + sin^4x) dx$. 1,00pt
- 2- On se propose d'intégrer dans $\mathbb R$ l'équation différentielle (E) :

$$y''' - 6y'' + 12y' - 8y = 0$$

a) Montrer que la fonction $y_0:x\mapsto e^{2x}$ est solution dans $\mathbb R$ de l'équation (E).

0,50pt

- b) Soit f une fonction trois fois dérivable sur \mathbb{R} . On pose $g(x) = e^{-2x} f(x)$. Exprimer les dérivées successives g', g'' et g''' en fonction des dérivées f', f'', f''' et f.
- c) Montrer que f est solution de l'équation (E) si et seulement si g'' est constante.

0,75pt

TOUTES SERIES MATHEMATIQUES

Durée : 2 Heures

d) En déduire les solutions dans \mathbb{R} de l'équation (E).

1,00pt

PROBLEME (09,5 POINTS)

Soit g la fonction définie sur $\mathbb{R} - \{-\ln 2\}$ par :

$$g(x) = \begin{cases} x + \frac{e^x}{2e^x - 1} & \text{si } x \le 0\\ 1 - x + \sqrt{x} ln(x) & \text{si } x > 0 \end{cases}$$

On désigne par (C_g) la courbe représentative de g dans un repère orthonormé (O, I, J) où l'unité sur les axes est de 2cm.

1-

a) Calculer les limites de g aux bornes de $\ensuremath{D_{g}}.$

1,50pt

- b) Calculer les limites suivantes : $\lim_{x\to -\infty} [g(x)-x]$ et $\lim_{x\to +\infty} \left[\frac{g(x)}{x}\right]$. Que peut-on en déduire ?
- c) Etudier la position de (C_g) par rapport à l'asymptote non parallèle aux axes dans $]-\infty;0].$ 1,00pt

2-

a) Etudier la continuité de g en 0.

0,50pt

- b) Etudier la dérivabilité de g en 0 et interpréter graphiquement les résultats. 0,75pt
- 3- Calculer la dérivée de g et dresser le tableau de variation de g.

1,50pt

- 4- Construire dans le repère, les asymptotes, la courbe (C_g) et les demi-tangentes au point d'abscisse 0. On remarquera que g(1)=0 et g'(1)=0. 1,75pt
- 5- Calculer en cm² l'aire du domaine délimité par (C_g) , la droite d'équation y=x et les droites d'équations $x=-\ln 8$ et $x=-\ln 4$.

Fin de l'épreuve.