

SERIE D, E, F, TI, GCE

MATHEMATIQUES

Durée: 3 Heures

Yaoundé le 20 juillet 2023

Concours d'entrée en première année

EXERCICE 1. 05 POINTS

1-	On donne (u_n) une suite	numérique qui	est définie	par : $u_0 =$	2 et $\forall n \in \mathbb{N}, u_{n+1} =$
	$\sqrt{u_n}$				C

a) Montrer que la suite (u_n) est minorée par 1.

0,75pt

b) Montrer que la suite (u_n) est décroissante.

0,50pt

c) Justifier que (u_n) est convergente et déterminer sa limite.

0,75pt

2- On donne le polynôme P défini par : $P(x) = 2x^3 - 7x^2 + 9$.

a) Vérifier que -1 est une racine de P.

0,50pt

b) Déterminer les nombres réels a, b et c tels que $P(x) = (x+1)(ax^2+bx+c)$.

0,75pt

c) Résoudre dans \mathbb{R} l'équation P(x) = 0.

0,75pt

d) En déduire dans $\mathbb R$ les solutions de l'inéquation ci-dessous :

 $(I_1): 2ln^3x - 7ln^2x + 9 < 0.$

1,00pt

0,50pt

EXERCICE 2. 05 POINTS

On considère le polynôme complexe P défini par : $P(z) = z^4 + 2\sqrt{3}z^3 + 8z^2 + 2\sqrt{3}z + 7$

- 1- Montrer que les nombres complexes i et -i sont des racines de P.
- 2- Déterminer les nombres a, b et c tels que : $P(z) = (z^2 + 1)(az^2 + bz + c)$. **0,75pt**
- 3- Résoudre dans \mathbb{C} l'équation : P(z) = 0.
- 4- Le plan complexe est muni d'un repère orthonormé $(0; \vec{u}, \vec{v})$. On donne les points A,
 - B, C et D d'affixes respectifs : $z_A = i$, $z_B = -i$, $z_C = -\sqrt{3} + 2i$ et $z_D = -\sqrt{3} 2i$.
 - a) Construire les points A, B, C et D (prendre 2 cm comme unité sur les axes). 1,00pt
 - b) Déterminer l'affixe du point I milieu du segment [CD]. **0,25pt**
 - c) Calculer les distances AI, BI et CI. 0,75pt
 - d) Montrer que les points A, B, C et D appartiennent à un même cercle dont on précisera le rayon et le centre. **0,75pt**

SERIE D, E, F, TI, GCE

MATHEMATIQUES

Durée: 3 Heures

PROBLEME. 10 POINTS

(O, I, J) est un repère orthonormé où l'unité sur les axes est de 2cm. On considère la fonction f définie sur $D=]0,2[\ \cup\]2\ ;\ +\infty[\ par\ f(x)=\frac{lnx}{(x-2)^2}$ et (C_f) sa courbe représentative.

Partie A

1- On considère la fonction g définie sur]0; $+\infty[$ par g(x)=x-2-2xlnx.

a) Calculer les limites de g en $+\infty$ et en 0.

0,50pt

b) Calculer la dérivée de g, étudier son signe et dresser son tableau de variation.

1,00pt

c) Déduire de la variation de g, le signe de g(x).

0,50pt

2- Etude de la variation de f et construction de sa courbe représentative.

a) Calculer les limites de f aux bornes de son ensemble de définition.

0,75pt

b) Déterminer toutes les asymptotes à la courbe de f.

0,75pt

c) Démontrer que pour tout $x \in D$, $f(x) = \frac{g(x)}{x(x-2)^3}$.

0,75pt

d) Donner le signe de la dérivée f'(x) et dresser le tableau de variation de f. **1,25pt**

e) Déterminer une équation de la tangente (T) à (C_f) au point d'abscisse 1. **0,50pt**

f) Construire la courbe (C_f) et la droite (T).

1,00pt

Partie B

On considère la fonction h définie sur]2; $+\infty$ [par $h(x) = \frac{1}{x(x-2)}$.

1- Déterminer les réels a et b tels que : $h(x) = \frac{a}{x} + \frac{b}{x-2}$ pour x > 2. **0,50pt**

2- En déduire une primitive H de h sur l'intervalle]2; $+\infty$ [.

0,50pt

3- Soit a un nombre réel tel que a>3. A(a) est l'aire en cm² de la partie du plan comprise entre l'axe des abscisses, la courbe de la fonction (C_f) et les droites d'équations x=a et x=3.

a) Calculer en fonction de a, l'aire A(a).

1,50pt

b) Calculer la limite de A(a) lorsque a tend vers $+\infty$.

0,50pt

Fin de l'épreuve.